메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이광호 (가톨릭관동대학교) 김탁겸 (가톨릭관동대학교) 김도삼 (한국해양대학교)
저널정보
한국해안해양공학회 한국해안·해양공학회논문집 한국해안해양공학회논문집 제32권 제4호
발행연도
2020.8
수록면
262 - 272 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지금까지 연안에서 발생하는 쇄파에 대한 연구는 지속적으로 수행되었으며, 그에 따른 많은 실험자료가 축적되어 왔다. 또한, 다양한 실험자료로부터 공학적인 적용을 위한 쇄파 정보를 정량적으로 예측하기 위하여 회귀분석에 기반한 다양한 경험식이 제안되었다. 그러나 쇄파는 내재하고 있는 변동성이 있으므로 선형 회귀분석과 같은 선형적 통계접근 방법에는 한계가 있다. 본 연구에서는 쇄파파고 및 쇄파수심을 예측하기 위하여 기계학습 중 하나인 신경망을 사용하는 비선형 방법을 제안하였다. 신경망은 구글에서 배포하고 있는 머신러닝 오픈소스 플랫폼인 텐서플로(Tensorflow)를 이용하여 구축하였다. 신경망 모델은 수집된 실험자료를 무작위로 선택하여 학습하였으며, 학습에 이용하지 않은 자료를 사용하여 학습된 신경망을 평가하였다. 학습된 신경망에 의해 예측된 쇄파파고와 쇄파수심에 대한 예측결과는 기존의 경험식에 의한 계산결과에 비해 높은 예측성능을 보였으며, 이는 충분히 학습된 신경망은 쇄파파고 및 수심을 예측하기 위한 유용한 도구로 사용될 수 있음을 보여준다.

목차

요지
Abstract
1. 서론
2. 쇄파 예측을 위한 기존 경험식의 특성
3. 신경망의 구성
4. 신경망을 이용한 쇄파지표의 예측
5. 결론
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-454-001175853