메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김영호 (고려대학교 산업경영공학부) 박상성 (청주대학교 빅데이터통계학과) 장동식 (고려대학교 산업경영공학부)
저널정보
디지털산업정보학회 디지털산업정보학회논문지 디지털산업정보학회논문지 제15권 제4호
발행연도
2019.1
수록면
103 - 110 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A patent contains detailed information of the developed technology and is published to the public. Thus, patents can be used to overcome the limitations of traditional technology trend research and prediction techniques. Recently, due to the advantages of patented analytical methodology, IP R&D is carried out worldwide. The patent is big data and has a huge amount, various domains, and structured and unstructured data characteristics. For this reason, there are many difficulties in collecting and researching patent information. Patent research generally writes the Search formula to collect patent documents from DB. The collected patent documents contain some noise patents that are irrelevant to the purpose of analysis, so they are removed. However, eliminating noise patents is a manual task of reading and classifying technology, which is time consuming and expensive. In this study, we propose a model that automatically classifies The Noise patent for efficient patent information research. The proposed method performs Patent Embedding using Word2Vec and generates Noise seed label. In addition, noise patent classification is performed using the Random forest. The experimental data is published and registered with the USPTO among the patents related to Ocean Surveillance & Tracking Network technology. As a result of experimenting with the proposed model, it showed 73% accuracy with the label actually given by experts.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0