메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Young-Jin (Center for Genome Science, National Institute of Health, KCDC) Ryu, Gil-Mi (Center for Genome Science, National Institute of Health, KCDC) Park, Chan (College of Pharmacy, Seoul National University) Kim, Kyu-Won (College of Pharmacy, Seoul National University) Oh, Berm-Seok (Center for Genome Science, National Institute of Health, KCDC) Kim, Young-Youl (Center for Genome Science, National Institute of Health, KCDC) Gu, Man-Bok (School of Life Science & Biotechnology, Korea University)
저널정보
한국유전체학회 Genomics & informatics Genomics & informatics 제5권 제4호
발행연도
2007.1
수록면
143 - 151 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To understand the mechanism of transcriptional regulation, it is essential to detect promoters and regulatory elements. Various kinds of methods have been introduced to improve the prediction accuracy of regulatory elements. Since there are few experimentally validated regulatory elements, previous studies have used criteria based solely on the level of scores over background sequences. However, selecting the detection criteria for different prediction methods is not feasible. Here, we studied the calibration of thresholds to improve regulatory element prediction. We predicted a regulatory element using MATCH, which is a powerful tool for transcription factor binding site (TFBS) detection. To increase the prediction accuracy, we used a regulatory potential (RP) score measuring the similarity of patterns in alignments to those in known regulatory regions. Next, we calibrated the thresholds to find relevant scores, increasing the true positives while decreasing possible false positives. By applying various thresholds, we compared predicted regulatory elements with validated regulatory elements from the Open Regulatory Annotation (ORegAnno) database. The predicted regulators by the selected threshold were validated through enrichment analysis of muscle-specific gene sets from the Tissue-Specific Transcripts and Genes (T-STAG) database. We found 14 known muscle-specific regulators with a less than a 5% false discovery rate (FDR) in a single TFBS analysis, as well as known transcription factor combinations in our combinatorial TFBS analysis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0