본문 바로가기
[학술저널]

  • 학술저널

Ilyas Idrisovich Ismagilov(Kazan Federal University) Ghena Alsaied(Kazan Federal University)

DOI : 10.7232/iems.2020.19.4.896

표지

북마크 0

리뷰 0

이용수 1

피인용수 0

초록

As a widely used method, regression analysis plays an increasingly important role in creating statistical models and making forecasts in the field of economics and finance. The use of traditional regression for modeling socio-economic processes is not sufficiently substantiated in some situations. Currently, a new direction is being actively developed, associated with fuzzy regression analysis and its application as an alternative to classical methods for modeling economic phenomena. Fuzzy regression methods are based on the theory of fuzzy sets. A number of methods and their modifications are proposed for constructing fuzzy regression models, but most of them use triangular fuzzy symmetric numbers. In this paper, we propose a new method for constructing linear fuzzy regression using trapezoidal fuzzy numbers. The method is based on dividing the sample using a regression model which is estimated by using the ordinary least squares. Two fuzzy regressions using triangular numbers are estimated from the formed samples, on the basis of which a fuzzy model with trapezoidal fuzzy numbers is constructed. Basing on the proposed method, a linear fuzzy model of the gross regional product as an indicator of the economic development of the Republic of Tatarstan of Russia is constructed depending on a number of factors. A comparative assessment of the quality of fuzzy regression models using triangular and trapezoidal numbers was performed.

목차

ABSTRACT
1. INTRODUCTION
2. METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here