상세검색
비밀번호 변경 안내
비밀번호를 변경하신 지 90일 이상 지났습니다.
개인정보 보호를 위해 비밀번호를 변경해 주세요.
비밀번호 변경 안내
비밀번호를 변경하신 지 90일 이상 지났습니다.
개인정보 보호를 위해 비밀번호를 변경해 주세요.
DOI : 10.7465/jkdi.2021.32.1.243
Nonlinear regression models are commonly used in various fields such as toxicology/pharmacology. When analyzing data using a nonlinear regression model the structure of error variance plays a key role in the estimation of parameters. Particularly, when data do not satisfy the homoscedasticity assumption, it is important to use an appropriate estimation method. In this paper, a robust M-estimation method against potential outliers in nonlinear regression under heteroscedasticity is considered. Under the heteroscedasticity assumption, three variance models are considered, and a weighted M-estimator is studied by the simulation to compare the performance of the estimator with three variance models. From the results of the simulation studies, even though not as well as proper estimators, WME using a nonlinear variance model generally shows good performances for homoscedastic data and heteroscedastic data with the variance models. The methods are also illustrated by analyzing real toxicological data.
Abstract
1. Introduction
2. Methodologies
3. Simulation studies
4. Application to real data
5. Concluding remarks
References
도움이 되었어요.0
도움이 안되었어요.0
알림 설정하기
논문 오류신고
신고항목
이 논문의 참고문헌을 찾아주세요.
이 논문의 참고문헌을 찾아주세요.
구매하기
장바구니
인용양식
공식 스폰서와 앰부시 마케팅의 광고 크리에이티브 효과 : 2009 광저우 아시안게임을 중심으로
기관인증