메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amir Tjolleng (University of Ulsan) Kihyo Jung (University of Ulsan)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제39권 제6호
발행연도
2020.12
수록면
625 - 636 (12page)
DOI
10.5143/JESK.2020.39.6.625

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Objective: This study developed a real-time system to detect driver"s cognitive load using a multi-layer artificial neural network (MANN) based on electrocardiography (ECG) signals. The real-time system was aimed at classifying driver"s status into either normal or overload.

Background: Driving with cognitive load is considered as one of significant factors for traffic accidents. Thus, an early detection of this risky status while driving is needed to prevent vehicle accidents.

Method: The ECG signals of this study were measured from 22 participants who performed simulator-based driving experiment under two different conditions (1: normal driving, 2: overload driving (driving while doing a two-back task or an arithmetic task)). A real-time detection system was developed using MANN on the ECG signals and its effectiveness was evaluated for two new participants who drove under the two driving conditions.

Results: The MANN model used for the real-time detection system showed perfect accuracy (100%), sensitivity (100%), and specificity (100%) for both of the training and testing data sets. In addition, the proposed real-time detection system successfully detected the change of participant"s status with a reasonable time delay (mean = 4.5 seconds).

Conclusion: This study demonstrated that the ECG signals can be used as a biometric measure for the detection of the driver"s cognitive status in real-time.

Application: The proposed detection system would be useful for the development of an intelligent vehicle that can provide timely interventions and/or warnings at the early onset of cognitive overload.

목차

1. Introduction
2. Development of the Real-Time Detection System
3. Performance Evaluation of the Real-Time Detection System
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-001486807