메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창수 (한국외국어대학교)
저널정보
한국번역학회 번역학연구 번역학연구 제22권 제1호
발행연도
2021.3
수록면
199 - 217 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The current paper reports the results of a text classification experiment on literary translation samples by human and machine translators. The original data consists of the English translations of 28 short and long Korean novels by a set of human translators and 3 Web-based neural machine translators – Google Translate (Google), Bing (Microsoft), and Papago (Naver). Machine translation samples were collected twice in February 2019 and February 2020. One hundred most frequent words were extracted from the data and subjected to supervised classification by two machine learning algorithms – random forest (RF) and linear discriminant analysis (LDA) - for cross-reference tests. The most important findings are as follows. First, Both RF and LDA classified human and machine translation samples from both 2019 and 2020 with high accuracy, with prediction accuracy rates topping 90 percent. This indicated a clear distinction in word use patterns between human and machine translators, which did not change much over the 1-year period. Second, in both RF and LDA tests, most of the 2019 machine translation samples were accurately classified according to their translators with prediction accuracy rates ranging between 78 and 100 percent. Classification accuracy, however, fell visibly for Bing and Papago in 2020, with Papago plunging from 100 and 80 percent to 41 percent. This meant that over the 1-year period the three machine translators moved in closer toward each other, suggesting a trend toward homogeneity in word use patterns over time.

목차

1. 서론
2. 학문적 배경
3. 분석 데이터 및 방법
4. 분석 결과
5. 결론
참고문헌
[Abstract]

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-800-001635749