본문 바로가기
  • 학술저널

표지

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다. 내서재에 논문을 담은 이용자 수의 총합입니다.

초록·키워드 목차

Recently, computer vision studies focusing on 3D comprehension have shown that it is possible to extract features directly from point cloud data. This ability requires an efficient shape-pattern description of point clouds. We designed a semantic segmentation algorithm for point clouds based on the PointNet architecture. Our approach also applies the PointSIFT module, which can encode information in different directions and adapt to the proportions of the shape being considered. Experiments using a standard benchmark dataset show that our algorithm is superior to the PointNet algorithm for semantic segmentation. #PointNet #PointSIFT #Point cloud #Semantic segmentation

Abstract
1. Introduction
2. Point Cloud Semantic Segmentation
3. Performance Evaluation
4. Conclusion
References

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
Insert title here
논문의 정보가 복사되었습니다.
붙여넣기 하세요.