메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yoon Ho Hwang (Yonsei University) Woo-Seung Kim (Yonsei University) Chang-Soo Yun (Yonsei University) Jae-Hyung Yeon (Yonsei University) Hyeon-Man Baek (Gachon University) Bong Soo Han (Yonsei University) Dong Youn Kim (Yonsei University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.26 No.3
발행연도
2021.9
수록면
356 - 362 (7page)
DOI
10.4283/JMAG.2021.26.3.356

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study aims to develop a deep learning (DL) model to quantify metabolites. To apply DL to metabolite quantification using ¹H-MRS data, Convolutional autoencoder (CAE) were designed to extract line‐narrowed, baseline‐removed, and noise-free metabolite spectra for each metabolite. Fifty thousand simulation data were generated by varying the SNR (4-12), linewidth (6-22 Hz), phase shift (± 5°), and frequency shift (± 5 Hz) on phantom spectra. The data were divided into 45,000 simulation data for training and 5,000 test data, and the mean absolute percent errors (MAPEs) were used to evaluate the performance of the CAE. The average MAPE of the metabolites was 13.64 ± 11.38 %. Fourteen metabolites were within the reported concentration ranges. These findings showed that the proposed method had similar or improved performance than conventional methods. The proposed method using DL was the recent and up-to-date quantification one and has clinically potential applicability.

목차

1. Introduction
2. Materials and Methods
3. Results
4. Discussions
5. Conclusions
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0