메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
봉재환 (상명대학교) Anders Lyhne Christensen (덴마크남부대학교) Danish Shaikh (덴마크남부대학교) 정성균 (상명대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.38 No.11
발행연도
2021.11
수록면
871 - 877 (7page)
DOI
10.7736/JKSPE.021.075

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Knee contact forces and knee stiffness are biomechanical factors worth considering for walking in knee osteoarthritis patients. However, it is challenging to acquire these factors in real time; thus, making it difficult to use them in robotic rehabilitation and assistive systems. This study investigated whether trained deep neural networks (DNNs) can capture the biomechanical factors only using kinematics during gait, which is possible to measure via sensors in real time. A public dataset of walking on the ground was analyzed through biomechanical analysis to train and test DNNs. Using the training dataset, several DNN topologies were explored via Bayesian optimization to tune the hyperparameters. After optimization, DNNs were trained to estimate the biomechanical factors in a supervised manner. The trained DNNs were then evaluated using two new datasets, which were not used in the training process. The trained DNNs estimated the biomechanical factors with a high level of accuracy in both types of test datasets. Results confirmed that DNNs can estimate the biomechanical factors based on only kinematics during gait.

목차

1. 서론
2. 무릎의 생체역학적 변인 추정기
3. 결과 및 논의
4. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0