메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강민철 (서울대학교병원 응급의학과) 손진만 (호서대학교)
저널정보
대한응급의학회 Clinical and Experimental Emergency Medicine Clinical and Experimental Emergency Medicine Vol.6 No.2
발행연도
2019.1
수록면
152 - 159 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective Assessing the severity of injury and predicting outcomes are essential in traumatic brain injury (TBI). However, the respiratory rate and Glasgow Coma Scale (GCS) of the Revised Trauma Score (RTS) are difficult to use in the prehospital setting. This investigation aimed to de­velop a new prehospital trauma score for TBI (NTS-TBI) to predict mortality and disability.Methods We used a nationwide trauma database on severe trauma cases transported by fire departments across Korea in 2013 and 2015. NTS-TBI model 1 used systolic blood pressure <90 mmHg, peripheral capillary oxygen saturation <90% measured via pulse oximeter, and motor component of GCS. Model 2 comprised variables of model 1 and age >65 years. We assessed discriminative power via area under the curve (AUC) value for in-hospital mortality and disability defined according to the Glasgow Outcome Scale with scores of 2 or 3. We then compared AUC values of NTS-TBI with those of RTS.Results In total, 3,642 patients were enrolled. AUC values of NTS-TBI models 1 and 2 for mortal­ity were 0.833 (95% confidence interval [CI], 0.815 to 0.852) and 0.852 (95% CI, 0.835 to 0.869), respectively, while AUC values for disability were 0.772 (95% CI, 0.749 to 0.796) and 0.784 (95% CI, 0.761 to 0.807), respectively. AUC values of NTS-TBI model 2 for mortality and disability were higher than those of RTS (0.819 and 0.761, respectively) (P<0.01). Conclusion Our NTS-TBI model using systolic blood pressure, motor component of GCS, oxygen saturation, and age was feasible for prehospital care and showed outstanding discriminative power for mortality.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0