메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김준영 (서울대학교) 김형중 (서울대학교) 정우균 (서울대학교) 이재원 (호전실업) 박용철 (호전실업) 안성훈 (서울대학교)
저널정보
적정기술학회 적정기술학회지 적정기술학회지 제5권 제2호
발행연도
2019.1
수록면
70 - 81 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
의류산업은 대표적인 노동집약적인 산업 중 하나로 의류 제조의 기본 공정인 봉제 작업은 인력에 대한 의존도가 매우 높다. 의류 생산비용은 라인의 효율성에서 큰 영향을 받는데, 생산비용의 절감을 위해서는 생산 속도를 조절하여 라인의 균형 유지하는 것이 중요하다. 그러나, 현재 의류 생산라인에서 활용되고 있는 인력에 의한 생산 실적 집계 방식은 이를 위한 부수적인 인력의 소요 등으로 인한 추가 비용이 소요되어 중소기업들이 직접 적용하기 쉽지 않다. 완제품의인력에 대한 의존도는 집계 시간의 추가 소요와 인적 오류가 크게 잠재되어 생산비용의 증가와 함께 효율성의 저하를초래할 수 있다. 본 논문에서는 에너지 소비 데이터를 수집하고 이를 CNN (Convolutional Neural Network) 기법을 적용하여 분석함으로써 재봉 작업을 통하여 생산한 제품의 수량을 추적하고 자동으로 집계할 수 있는 봉제 작업 생산 추적 시스템을 제안한다. 개발된 시스템을 통하여 2종의 재봉 작업을 테스트 한 결과, 최대 98.6 %의 정확도를 보이며재봉 작업을 감지할 수 있었다. 개발도상국에서 의류봉제산업은 매우 중요한 산업이나, 위에 언급한 문제들을 해결하기 위하여 고가의 첨단기술을 적용하는 등 많은 자본을 투입하는 것은 크게 제한된다. 적정 기술을 적용한 본 기술은이러한 개발도상국의 의류산업에 큰 도움을 줄 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0