메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김창종 (창원대학교) 김석 (창원대학교) 조영태 (창원대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.39 No.1
발행연도
2022.1
수록면
79 - 85 (7page)
DOI
10.7736/JKSPE.021.076

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, industrial manufacturing has developed into additive manufacturing, benefiting from multi-item small-sized production and effective manufacturing. Importantly, Wire Arc Additive Manufacturing, which uses metal wires, is attracting worldwide attention for its high-quality metal product technology. Technological innovation that combines virtual physics with reality through big data communication, such as process variables along with Wire Arc Additive Manufacturing, is an essential task for implementing smart manufacturing technology. Due to the characteristic of Wire Arc Additive Manufacturing, numerous variable conditions exist, making it difficult to standardize robot"s process path data generation algorithms and data application methods, and this data generation method is being studied as a core element technology. The present study generated foundation process implementation, simulation, and generated path data for robots in virtual space using RoboDK, which provides robot libraries from multiple manufacturers, and Python, which is a universal programming language. To implement the experimental data in practice, ABB"s industrial six-axis robots IRB-6700 and Fronius TPS500i were used to control the arcing plasma heat source, and the process path worked the same as simulation. Based on the underlying experimental results, this process can be applied to generation of additive manufacturing in the Wire Arc Additive Manufacturing process for 3D models.

목차

1. 서론
2. 하드웨어 및 소프트웨어 구성
3. 실험 방법
4. 결론
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0