메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Choi keonghun (Seoul National University of Science and Technology) Jong-Eun Ha (Seoul National University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,519 - 1,522 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autonomous driving of vehicles or robots using artificial intelligence is being studied the most. The recognition of the surrounding environment is the basis for artificial intelligence that requires interaction with the surroundings, which means that research on object detection is necessary. The size of the model is smaller, and more information can be obtained than detection using anchors, but the accuracy of segmentation is generally lower. In this paper, to improve this point, a transformed transformer structure is applied to improve the performance of segmentation, and it is proposed to use data in a format different from the existing label data. By using a single image as an input, there is no loss of location information, and a lighter model is presented by obtaining a segmentation image without going through a separate process. At the same time, to improve generalization performance, a method of assigning one label to one characteristic rather than assigning one label to one object was applied to the composition of the label data, and the difference in generalization ability was compared.

목차

Abstract
1. INTRODUCTION
2. Transformer Segmentation
3. TAG TYPE LABEL
4. RESULT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0