메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최형석 양윤기 (수원대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제25권 제8호
발행연도
2022.8
수록면
991 - 998 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, object recognition using image/video signals is rapidly spreading on autonomous driving and mobile phones. However, the actual input image/video signals are easily exposed to a poor illuminance environment. A recent researches for improving illumination enable to estimate and compensate the illumination parameters. In this study, we propose VE-DCE (video enhancement zero-reference deep curve estimation) to improve the illumination of low-light images. The proposed VE-DCE uses unsupervised learning-based zero-reference deep curve, which is one of the latest among learning based estimation techniques. Experimental results show that the proposed method can achieve the quality of low-light video as well as images compared to the previous method. In addition, it can reduce the computational complexity with respect to the existing method.

목차

ABSTRACT
1. 연구배경
2. 저조도 영상개선의 연구동향
3. 기존의 Zero-reference deep curve estimation(ZDCE)
4. 제안하는 VE-DCE(video enhancement deep curve estimation)
5. 실험결과
6. 결론
REFERENCE

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001691232