메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaopeng Yang (Handong Global University) Mi Rin Lee (Jeonbuk National University Medical School) Jae Do Yang (Jeonbuk National University Medical School)
저널정보
대한외과학회 Annals of Surgical Treatment and Research Annals of Surgical Treatment and Research Vol.103 No.1
발행연도
2022.7
수록면
47 - 52 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: Precise estimation of the standard liver volume (SLV) is crucial in decision making regarding major hepatectomy and living donor liver transplantation. This study aimed to propose an accurate and efficient formula for estimating the SLV in the Korean population.
Methods: We created a regression model for SLV estimation using a data set of 230 Korean patients with healthy livers. The proposed model was cross validated using a different data set of 37 patients with healthy livers. The total liver volume (TLV), except for the volume of liver blood vessels, was measured through computed tomography volumetry as the dependent variable. Various anthropometric variables, liver height (LH), thoracic width (TW), age, and sex (0, female and 1, male) were considered as candidates for independent variables. We conducted stepwise regression analysis to identify variables to be included in the proposed model.
Results: A new formula was established; SLV = −1,275 + 9.85 × body weight (BW, kg) + 19.95 × TW (cm) + 7.401 × LH (mm). The proposed formula showed the best performance among existing formulas over the cross-validation data set.
Conclusion: The proposed formula derived using BW, TW, and LH estimated the TLV in the cross-validation data set more accurately than existing formulas.

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-514-000221733