메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최원준 (전남대학교)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第2號(通卷 第412號)
발행연도
2023.2
수록면
237 - 246 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The data that fully reflects the dynamics of a building can only be collected after the building is completed. Therefore, the data for training machine learning models are not sufficient at the operation stage of buildings. In addition, the dynamics of buildings and energy systems frequently change due to age deterioration, commissioning, component replacement, and retrofitting. Thus, the retraining of deep learning models to reflect the changed system dynamics is required. Therefore, the performance benchmark of deep learning architecture should be designed in consideration of these specificities of the building-energy field. This study benchmarks the time-series forecasting performance of three deep learning architectures: the multilayer perceptron (MLP) and long short-term memory (LSTM), which are widely used architectures, and the transformer, which is relatively recently developed but has high potential. For reproducible benchmarks, a publicly accessible data generator and the open-source Python library DeepTimeSeries was developed. The performance dependence according to the training dataset size was evaluated by changing the training dataset size from 0.3 to 0.9 years. Forecasting targets were the zone air temperatures and thermal loads. Among the three architectures, the transformer had the best performance. In particular, when the training dataset size was small, the transformer exhibited better performance than other architectures in forecasting peaks and dips. Other architectures displayed unstable performance when the training dataset size was small. The results suggest that the transformer has a high potential for time series forecasting in the field of building energy, where the amount of data is limited in most cases.

목차

Abstract
1. 서론
2. 벤치마크용 데이터
3. 벤치마크의 조건 설정
4. 심층학습 아키텍처
5. 벤치마크 결과와 고찰
6. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-540-000456272