메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In clinical trials with repeated measurements, the time-averaged difference (TAD) may provide a more powerful evaluation of treatment efficacy than the rate of changes over time when the treatment effect has rapid onset and repeated measurements continue across an extended period after a maximum effect is achieved (Overall and Doyle, Controlled Clinical Trials, 15, 100-123, 1994). The sample size formula has been investigated by many researchers for the evaluation of TAD in two treatment groups. For the evaluation of TAD in multi-arm trials, Zhang and Ahn (Computational Statistics & Data Analysis, 58, 283-291, 2013) and Lou et al. (Communications in Statistics-Theory and Methods, 46, 11204-11213, 2017b) developed the sample size formulas for continuous outcomes and count outcomes, respectively. In this paper, we derive a sample size formula to evaluate the TAD of the repeated binary outcomes in multi-arm trials using the generalized estimating equation approach. This proposed sample size formula accounts for various correlation structures and missing patterns (including a mixture of independent missing and monotone missing patterns) that are frequently encountered by practitioners in clinical trials. We conduct simulation studies to assess the performance of the proposed sample size formula under a wide range of design parameters. The results show that the empirical powers and the empirical Type I errors are close to nominal levels. We illustrate our proposed method using a clinical trial example.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001569694