메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeongmun Jeong (Pusan National University) Younshik Chung (Pusan National University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제27권 제2호
발행연도
2020.3
수록면
189 - 199 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper studies a Bayesian ordered multiple linear regression model with skew normal error. It is reasonable that the kind of inherent information available in an applied regression requires some constraints on the coefficients to be estimated. In addition, the assumption of normality of the errors is sometimes not appropriate in the real data. Therefore, to explain such situations more flexibly, we use the skew-normal distribution given by Sahu et al. (The Canadian Journal of Statistics, 31, 129–150, 2003) for error-terms including normal distribution. For Bayesian methodology, the Markov chain Monte Carlo method is employed to resolve complicated integration problems. Also, under the improper priors, the propriety of the associated posterior density is shown. Our Bayesian proposed model is applied to NZAPB’s apple data. For model comparison between the skew normal error model and the normal error model, we use the Bayes factor and deviance information criterion given by Spiegelhalter et al. (Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583–639, 2002). We also consider the problem of detecting an influential point concerning skewness using Bayes factors. Finally, concluding remarks are discussed.

목차

Abstract
1. Introduction
2. Ordered multiple linear regression with skew normal distribution
3. Bayesian Inference
4. Real data analysis
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441911