메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김윤조 (서울여자대학교) 정주립 (서울여자대학교) 황성일 (분당서울대학교병원) 홍헬렌 (서울여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.10
발행연도
2023.10
수록면
866 - 873 (8page)
DOI
10.5626/JOK.2023.50.10.866

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전립선암은 전 세계적으로 남성에서 두 번째로 흔하게 발생되는 암이며, 악성도에 따라 재발 가능성 및 치료의 효과가 달라지기 때문에 전립선암의 악성도를 예측하는 것이 필수적이다. 본 연구는 다중 파라미터 자기공명영상에서 전립선암의 악성도를 예측하기 위해 크기 정규화를 적용하여 작은 종양에 대한 정보를 강화한다. 또한, 시각적 특징이 유사하지만 악성도가 다른 종양을 구분하기 위해 다중 손실함수를 제안한다. 실험 결과, ADC 맵 크기 정규화 패치로 학습한 제안된 모델은 정확도 76.28%, 민감도 76.81%, 특이도 75.86%, AUC 0.77의 성능을 보인다. 또한 1.5cm 미만인 작은 종양에서 종양 중심 패치와 비교하여 크기 정규화된 ADC 맵이 정확도 76.47%, 민감도 90.91%, 특이도 69.57%로 각각 17.65%, 27.27%, 13.05%의 향상된 성능을 보인다.

목차

요약
Abstract
1. 서론
2. 제안 방법
3. 실험 방법 및 결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0