메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정치윤 (한국전자통신연구원) 문경덕 (한국전자통신연구원) 김무섭 (한국전자통신연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제39권 제2호
발행연도
2023.4
수록면
143 - 156 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
인공위성이 촬영한 영상의 내용을 정확하게 분석하기 위해서는 영상에 존재하는 구름 영역을 정확하게인지하는 것이 필요하다. 최근 다양한 분야에서 딥러닝(deep learning) 모델이 뛰어난 성능을 보여줌에 따라 구름 영역 검출을 위해 딥러닝 모델을 적용한 방법들이 많이 제안되고 있다. 하지만 현재 구름 영역 검출 방법들은 의미 영역 분할 방법의 네트워크 구조를 그대로 사용하여 구름 검출 성능을 향상하는 데는 한계가 있다. 따라서 본 논문에서는 구름 검출 데이터 세트에 다중 브랜치 네트워크 구조 탐색을 적용하여 구름 영역 검출에최적화된 네트워크 모델을 생성함으로써 구름 검출 성능을 향상하는 방법을 제안한다. 또한 구름 검출 성능을향상하기 위하여 의미 영역 분할 모델의 학습 단계와 평가 단계의 평가 기준 불일치를 해소하기 위해 제안된soft intersection over union (IoU) 손실 함수를 사용하고, 다양한 데이터 증강 방법을 적용하여 학습 데이터를 증가시켰다. 본 논문에서 제안된 방법의 성능을 검증하기 위하여 아리랑위성 3/3A호에서 촬영한 영상으로 구성된 구름 검출 데이터 세트를 사용하였다. 먼저 제안 방법과 의미 영역 분할 데이터 세트에서 탐색된 기존 네트워크 모델의 성능을 비교하였다. 실험 결과, 제안 방법의 mean IoU는 68.5%이며, 기존 모델보다 mIoU 측면에서 4%의 높은 성능을 보여주었다. 또한 soft IoU 손실 함수를 포함한 다섯 개의 손실 함수를 적용하여 손실 함수에 따른 구름 검출 성능을 분석하였으며, 실험 결과 본 연구에서 사용한 soft IoU 함수가 가장 좋은 성능을 보여주었다. 마지막으로 의미 영역 분할 분야에서 활용되는 최신 네트워크 모델과 제안 방법의 구름 검출 성능을비교하였다. 실험 결과, 제안 모델이 의미 영역 분할 분야의 최신 모델들보다 mIoU와 정확도 측면에서 더 나은성능을 보여주는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0