메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
우월 (Konkuk University) 김우형 (Kyunghee University) 조용석 (경희대학교)
저널정보
한국무역연구원 무역연구 무역연구 제19권 제2호
발행연도
2023.4
수록면
391 - 407 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose – This study aims to more accurately and effectively predict trends in portfolio prices by building a model using LSTM neural networks, and investigating the risk and profit prediction of investment portfolios. Design/Methodology/Approach – To obtain a return on stocks, this study used 60 monthly transaction data from major countries, including the United States and Korea, for five ETFs, BNDX, BND, VXUS, VTI, and 122630.KS, for five years from January 2016 to December of 2021. In addition, a related portfolio was constructed using modern portfolio theory. Through Min-Max normalization, five ETFs and closing data from April 20 to July 20, 2022 were normalized. The input data were classified into two characteristic dimensions, and an LSTM time series model was constructed with the number of nodes in six hidden layers. Findings – By establishing a portfolio and making regression predictions, it was possible to effectively reduce situations in which prediction accuracy was lowered due to large fluctuations in index-based stocks. Research Implications – The predicted results were tested using OLS regression analysis. The relationship between the risk of building a tangential portfolio with the same composition with different weights, the accuracy of stock price prediction by effectively reducing the low prediction accuracy of highly volatile stocks in the portfolio, and changing the set risk-free interest rate were examined.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0