메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서성원 (건국대학교)
저널정보
강원대학교 경영경제연구소 아태비즈니스연구 아태비즈니스연구 제15권 제1호
발행연도
2024.3
수록면
145 - 157 (13page)
DOI
https://doi.org/10.32599/apjb.15.1.202403.145

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs’ decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0