메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이준희 (국립산림과학원) 이상욱 (고려대학교) 유영재 (고려대학교) 김경민 (국립산림과학원) 전성우 (고려대학교)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.15 No.4
발행연도
2024.8
수록면
477 - 488 (12page)
DOI
10.15531/KSCCR.2024.15.4.477

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Landslides are becoming more frequent and severe due to increasing summer heavy rainfall and typhoons caused by climate change. As a result, the importance of research to predict and detect landslides is also growing. In this study, suitable vegetation indices for detecting and predicting landslides in South Korea were identified based on 1,500 landslides, provided by the National Disaster Safety Institute from 2011 to 2017. Various vegetation indices listed in the Index Data Base (IDB) of the Institute for Crop Science and Resource Conservation (INRES) in Germany were reviewed and selected for construction. Five vegetation indices were constructed using Landsat-7 imagery: Normalized Differential Vegetation Index (NDVI), Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI), Atmospherically Resistant Vegetation Index (ARVI), and Renormalized Differenced Vegetation Index (RDVI). Additionally, the Maxent model was applied to predict landslides using each vegetation index, and the accuracy was measured by comparing the ROC-AUC values. The results showed that the SR vegetation index detected landslides most effectively. Furthermore, the accuracy comparison of the Maxent model revealed that the model using vegetation indices had higher ROC-AUC values compared to the model without vegetation indices, with the SR-based Maxent model yielding the most accurate results. This study provides remote sensing data necessary for creating landslide prediction maps. However, future research should consider factors influencing vegetation indices other than landslides and reflect the extent and magnitude of landslide damage.

목차

ABSTRACT
1. 서론
2. 연구 방법
3. 연구결과
4. 결론 및 고찰
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090674538