메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강병재 (전북대학교) 윤준서 (전북대학교) 박종재 (전북대학교) 우태규 (전북대학교) 박일송 (전북대학교)
저널정보
한국표면공학회 한국표면공학회지 한국표면공학회지 제57권 제4호
발행연도
2024.8
수록면
274 - 284 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO₄ and 100 g/L H₂SO₄, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.

목차

Abstract
1. 서론
2. 실험 방법
3. 결과 및 고찰
4. 결론
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091116861