메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chaewon Moon (Kyungpook National University) Dong-hwi Kim (Kyungpook National University) Dabin Kang (Kyungpook National University) Sang-hyo Park (Kyungpook National University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제29권 제7호
발행연도
2024.12
수록면
1,136 - 1,146 (11page)
DOI
10.5909/JBE.2024.29.7.1136

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the advancement of autonomous driving technology, the importance of semantic segmentation has markedly increased, while the amount of datasets needed for training has been limited. Accordingly, there has been a growing effort to increase datasets using data augmentation techniques to train semantic segmentation models. However, the distributional gap between augmented and real data can lead to performance limitations when models trained on real data are applied to augmented data. Therefore, this paper constructs new datasets by applying proposed data transformations on real-world datasets. Additionally, we evaluate the impact of these transformations on semantic segmentation models trained on real datasets. Results show that semantic segmentation models are vulnerable to distortions in color information and object characteristics in transformed datasets. Furthermore, the vision transformer based model is less sensitive to distribution changes and shows greater segmentation performance compared to fully convolutional network based models.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Proposed Method
Ⅳ. Experiment Result
Ⅴ. Conclusion
References

참고문헌 (23)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091243710