메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장민혁 (한국공공정책개발연구원)
저널정보
한국비교정부학회 한국비교정부학보 한국비교정부학보 제28권 제3호
발행연도
2024.9
수록면
17 - 40 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
(Purpose) The main goal of this study is to build a time-series prediction model to address Korea's low birth rate using machine learning and ARIMA models. It aims to predict future fertility trends and analyze socio-economic factors influencing birth rates with a focus on the MZ generation whose views on marriage and childbirth differ from previous generations. (Design/methodology/approach) This study utilizes machine learning models, including Linear Regression, Support Vector Machine (SVM), Random Forest, AdaBoost, Neural Networks, and the ARIMA time-series model. These models are trained on socio-economic data, analyzing variables like marriage rates, employment rates, and economic growth. The predictive accuracy of the models is evaluated using performance metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R² to forecast future birth rates. (Findings) The findings reveal that Neural Networks exhibited the highest predictive accuracy for future birth rates, with an R² of 0.978, followed by Linear Regression and SVM. The ARIMA model effectively forecasted long-term birth rate trends, demonstrating its suitability for analyzing time-series data. Socio-economic factors such as childcare subsidies, household income, and age at first marriage were found to significantly impact the fertility rate. (Research implications or Originality) This research combines machine learning models and time-series analysis to predict Korea's low birth rate. It is to highlight the need for policies that address both economic support and societal attitudes toward marriage and childbirth. It provides a framework for policymakers to design effective interventions and emphasizes the importance of non-linear relationships between socio-economic factors and birth rates, offering a novel approach in demographic studies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0