본문 바로가기
  • 학술저널

표지

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다. 내서재에 논문을 담은 이용자 수의 총합입니다.

초록·키워드 목차

이미지 분류는 기계학습에서 가장 활발하게 연구되고 있는 주제 중 하나이다. 이미지 데이터는 일반적으로 2차원 혹은 3차원 행렬 구조를 가지고 있으며, 지지벡터기계 등 전통적인 분류 기법을 적용하기 위해 벡터화를 시행하게 된다. 하지만 벡터화는 이미지 데이터가 제공하는 구조적 정보를 무시할 수 있다. 구조적 정보를 이용하는 합성곱 신경망은 이러한 단점을 보완하기 위해 도입되었으나, 합성곱 신경망을 포함하는 신경망은 일반적으로 많은 데이터를 요구한다. 반면 지지벡터기계는 적은 수의 표본에서도 상대적으로 안정적인 분류 성능을 보일 뿐만 아니라 지지행렬기계 및 커널 지지행렬기계로 확장됨으로써 이미지 데이터의 구조적 정보도 반영할 수 있게 되었다. 본 논문에서는 표본의 개수가 상대적으로 적은 이미지 데이터에 대하여 비선형 분류 방법인 지지벡터기계, 커널 지지행렬기계, 그리고 합성곱 신경망의 예측 성능을 비교하고 선형 분류 방법이지만 이미지 데이터의 구조적 정보를 반영하는 지지행렬기계도 함께 비교한다. #지지벡터기계 #지지행렬기계 #커널 #합성곱 신경망 #Convolutional neural network #kernel #support matrix machine #support vector machine

요약
1. 서론
2. 본론
3. 데이터 분석
4. 결론
References
Abstract

저자의 논문

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
Insert title here
논문의 정보가 복사되었습니다.
붙여넣기 하세요.