도움말

실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments
한국통신학회논문지 제33권 제8호(네트워크 및 서비스), 2008.8, 707-718 (12 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 117건
피인용수 : 0건
분야내 활용도 : 15%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
Traffic classification의 방법은 동적으로 변하는 application의 변화에 대처하기 위하여 페이로드나 port를 기반으로 하는 것에서 ML 알고리즘을 기반으로 하는 것으로 변하여 가고 있다. 그러나 현재의 ML 알고리즘을 이용한 traffic classification 연구는 offline 환경에 맞추어 진행되고 있다. 특히, 현재의 기존 연구들은 testing 방법으로 cross validation을 이용하여 traffic classification을 수행하고 있으며, traffic flow를 기반으로 classification 결과를 제시하고 있다. 본 논문에서는 testing방법으로 cross validation과 split validation을 이용했을 때, traffic classification의 정확도 결과를 비교한다. 또한 바이트를 기반으로 한 classification의 결과와 flow를 기반으로 한 classification의 결과를 비교해 본다. 본 논문에서는 J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, NaiveBayes와 같은 ML 알고리즘과 다양한 feature set을 이용하여 트래픽을 분류한다. 그리고 split validation을 이용한 traffic classification에 적합한 최적의 ML 알고리즘과 feature set을 제시한다.

The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross?validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

목차
요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 문제 정의
Ⅳ. 데이터 트레이스 및 Feature Set 정의
Ⅴ. 실험 결과
Ⅵ. 결론 및 향후 연구
참고문헌
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (0)

현재 논문의 참고문헌을 찾아 신청해주세요!

해당 논문은 참고문헌 정보가 없습니다.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (3)

정광본 식별저자 저자의 상세정보를 확인해 보세요.

권호 내 다른 논문 (16)

한국통신학회논문지 제33권 제8호(네트워크 및 서비스) 의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 다음
  •  
  • 마지막
추천 논문 (8)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 성균관대학교 자연과학캠퍼스 10
2 국립중앙도서관 8
3 강원대학교 6

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

피인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동