도움말

약물-표적 단백질 연관관계 예측모델을 위한 쌍 기반 뉴럴네트워크

Pairwise Neural Networks for Predicting Compound-Protein Interaction
인지과학 제28권 제4호, 2017.12, 299-314 (16 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 56건
피인용수 : 0건
분야내 활용도 : 10%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
In-silico 기반의 약물-표적 단백질 연관관계 예측은 신약 탐색 단계에서 매우 중요하다. 그러나 기존의 예측모델은 입력 값이 고정적이며 표적 단백질의 특질 값이 가공된 데이터로 한정됨으로써 예측 모델의 확장성과 유연성이 부족하다. 본 논문에서는 약물-표적 단백질 연관관계를 예측하는 확장 가능한 형태의 머신러닝 모델을 소개한다. 확장 가능한 머신러닝 모델의 핵심 아이디어는 쌍기반의 뉴럴 네트워크로써, 약물과 단백질의 미가공 데이터를 사용하여 특질을 추출하고 특질 값을 각각의 뉴럴 네트워크 레이어에 입력한다. 이 방법은 추가적인 지식없이 자동적으로 약물과 단백질의 특질을 추출한다. 또한 쌍기반 레이어는 특질값을 풍부한 저차원의 벡터로 향상 시킴으로써 입력 값의 차이로 인한 편향 학습을 방지한다. PubChem BioAssay(PCBA) 데이터 셋에 기반한 5-폴드 교차 검증법을 통하여 제안한 모델의 성능을 평가했으며, 이전의 모델보다 우월한 성능을 보였다.

Predicting compound-protein interactions in-silico is significant for the drug discovery. In this paper, we propose an scalable machine learning model to predict compound-protein interaction. The key idea of this scalable machine learning model is the architecture of pairwise neural network model and feature embedding method from the raw data, especially for protein. This method automatically extracts the features without additional knowledge of compound and protein. Also, the pairwise architecture elevate the expressiveness and compact dimension of feature by preventing biased learning from occurring due to the dimension and type of features. Through the 5-fold cross validation results on large scale database show that pairwise neural network improves the performance of predicting compound-protein interaction compared to previous prediction models.

목차
서론
연관연구
제안 모델
실험 및 평가
결론
참고문헌
(Abstract)
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (0)

현재 논문의 참고문헌을 찾아 신청해주세요!

해당 논문은 참고문헌 정보가 없습니다.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (3)

이문환 식별저자 저자의 상세정보를 확인해 보세요.

권호 내 다른 논문 (9)

인지과학 제28권 제4호 의 상세정보를 확인해 보세요.

추천 논문 (10)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 서울대학교 13
2 서울미디어대학원대학교(한독미디어대학원대학교) 4
3 가천대학교 4

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

피인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동