메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재웅 (성균관대학교) 이종욱 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.6
발행연도
2017.6
수록면
621 - 627 (7page)
DOI
10.5626/JOK.2017.44.6.621

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협업필터링은 사용자들이 평가한 항목들의 유사성을 기반으로 평가되지 않은 항목을 효과적으로 추천해주는 기법이다. 기존에는 사용자가 평가하지 않은 항목 중 상위  개 항목의 추천 정확도를 높이기 위하여 사용자의 항목의 대한 상대적 선호도를 반영하는 쌍 기반 선호도(pair-wise preference)와 목록 기반 선호도(list-wise preference)가 제안되었다. 하지만 이러한 방법들은 사용자가 평가한 항목 간의 상대적인 선호도를 표현하는데 한계가 있으며, 각각의 항목들의 중요도를 반영할 수 없는 단점이 있다. 본 논문에서는 유사도 및 순위 값을 계산할 때 평점 선호도 표현 방법과 역 사용자 빈도수(inverse user frequency)를 이용하여 사용자의 잠재된 선호도를 표현하는 새로운 방법을 제안한다. 제안 방법을 메모리 기반 협업필터링에 적용하여 비교한 결과 기존 방법보다 최대 2배 이상 정확도가 향상되는 것을 확인할 수 있었다.

목차

1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0