메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyuho Lee (UNIST) Junyoung Park (UX Factory) Hoi-Jun Yoo (KAIST)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.19 No.1
발행연도
2019.2
수록면
129 - 136 (8page)
DOI
10.5573/JSTS.2019.19.1.129

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A low-power neural network classifier processor is proposed for real-time mobile scene classification. It has analog-digital mixed-mode architecture to save power and area while preserving fast operation speed and high classification accuracy. Its current-mode analog datapath replaces massive digital computations such as multiply-accumulate and look-up table operations, which saves area and power by 84.0% and 82.2% than those of digital ASIC implementation. Moreover, the processor integrates a multi-modal and highly controllable radial basis function circuit that compensates for the environmental noise to make the processor maintain high classification accuracy despite of temperature and supply voltage variations, which are critical in mobile devices. In addition, its reconfigurable architecture supports both multi-layer perceptron and radial basis function network. The proposed processor fabricated in 0.13 mm CMOS process occupies 0.14 ㎟ with 2.20 mW average power consumption and attains 92% classification accuracy.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. NEURAL NETWORK CLASSIFIER
Ⅳ. IMPLEMENTATION & MEASUREMENT
Ⅴ. CONCLUSIONS
REFERENCES

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000425899