메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Alanazi Rayan (jouf University) Muhammad Ashfaq khan (Dongguk University) Fawaz Alhazemi (University of Jeddah) Hamoud Alshammari (jouf University) Yunmook Nah (Dankook University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.1
발행연도
2020.2
수록면
49 - 57 (9page)
DOI
10.5573/IEIESPC.2020.9.1.049

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Over the last decade, cloud computing has exponentially transformed the ways of computing. In spite of its various advantages, cloud computing suffers from several challenges that affect performance. Two of the fundamental challenges are power consumption and dynamic resource scaling. An efficient resource allocation strategy could help cloud computing to improve overall performance and operational costs. In this paper, we design a novel approach to available time slot prediction in a data node, based on an artificial neural network (ANN), which predicts the time at which the required resources will be available. We conducted experiments on several nodes, obtaining up to 98%, and outperforming state-of-the-art available time slot prediction approaches. We claim that available time–slot prediction for cloud computing based on an ANN will lead to optimum resource allocation and to minimizing energy consumed while maintaining the essential performance level.

목차

Abstract
1. Introduction
2. Literature Review
3. Artificial Neural Network for Available Time Slot Prediction
4. Experiment and Results
5. Conclusion and Future Work
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0