메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
원도 (세종대학교) 왕콘 (세종대학교) 란희 (세종대학교) 배기형 (세종대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제22권 제2호
발행연도
2022.2
수록면
545 - 558 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구의 목적은 전통적인 통계과 기계학습(Machine Learning)을 통해 중국 문화산업 기업의 재무적 곤경을 정확하게 예측하는 분석 모형을 탐색하는 데 있다. 예측모형을 구축하기 위하여 중국 128개 문화산업상장 기업의 데이터를 수집하였다. 25개 설명변수로 이뤄진 데이터베이스를 토대로 판별분석과 로지스틱 회귀(Logistic) 등 전통적인 통계 방법과 서포트 벡터 기계(SVM), 결정 트리(Decision Tree)와 랜덤 포레스트 (Random Forest) 등 기계학습을 이용한 예측모형을 구축하고 각 모형의 성능 평가를 위해 Python 소프트웨어를 사용한다. 분석 결과, 예측 성능이 가장 좋은 모형은 랜덤 포레스트(Random Forest) 모형으로 95%의 정확도를 보였다. 그 다음은 서포트 벡터 기계(SVM) 모형으로 93%의 정확도를 보였다. 그 다음은 결정 트리(Decision Tree) 모형으로 92%의 정확도를 보였다. 그 다음은 판정분석 모형으로 89%의 정확도를 보였다. 예측 효과가 가장 낮은 모형은 로지스틱 회귀(Logistic) 모형으로 88%의 정확도를 보였다. 이는 중국 문화산업 기업의 재무적 곤경을 예측하면서 기계학습 모형이 전통적인 통계 모형보다 더 좋은 예측 효과를 얻을 수 있음을 설명한다.

목차

요약
Abstract
I. 서론
II. 이론적 배경
III. 표본 선정 및 지표 구축
IV. 전통적 통계모형과 기계학습 모형의 예측 결과와 분석
V. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-310-001094065