메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hojin Lee
저널정보
한국재무관리학회 재무관리연구 재무관리연구 제33권 제1호
발행연도
2016.3
수록면
149 - 182 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Discrete- and continuous-time stochastic volatility (SV) models are introduced to explain conditional heterogeneity and dependence along with conditional leptokurtosis found in higher order moments of two stock market index return processes. We use the efficient method of moments (EMM) procedure combined with the seminonparametric (SNP) model as the score generator to estimate SV models. The EMM is applicable to a variety of asset pricing models where the moment restrictions contain unobservable state vector and improves efficiency of the estimator without resorting to the likelihood approach. By employing EMM in estimating two SV models with SNP auxiliary models, we aim to evaluate the performance of the SNP conditional density function and the SV models in characterizing non-Gaussianity of the conditional volatility process. As seen from the empirical results, the SV models fail to fit the various scores considered in the EMM estimation. The SV models are not appropriate for capturing the characteristics of non-Gaussianity, fat-tailed behavior and conditional heterogeneity of the observed data. We also find that the SNP models are more appropriate in modeling non-Gaussianity and non-linear dynamics along with conditional heterogeneity of the conditional distribution in the index return process.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089573459