메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제9권 제3호
발행연도
2003.12
수록면
117 - 135 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개인화된 정보를 제공하기 위한 협력 여과 기법에 대한 많은 연구가 이루어지고 있는 데, 유사 사용자들을 찾는 과정에서 상관계수와 같은 유사성 척도를 이용하여 모든 사용자와의 유사성을 계산하는 과정을 거친다. 이 때 사용자 수가 많아지게 되면, 계산의 복잡도가 지수적으로 증가하게 되는 규모의 문제가 발생한다.
본 연구는 협력 여과 기법에서 주로 사용하는 유사성 척도가 사용자 집단이 커짐에 따라 계산의 복잡도가 지수적으로 증가하는 문제를 해결하기 위한 방안을 제시하는 것이 주 목적이다. 규모의 문제를 해결하기 위해 클러스터링 모델 기반 접근 방식을 사용하고 아이템의 선호도 계산을 위해 RFM(Recency, Frequency, Momentary) 기준의 사용을 제안한다. 먼저 SOM을 이용하여 전체 사용자를 사용자 집단으로 클러스터링하고 사용자 집단별로 RFM 기준에 의해 아이템의 점수를 계산하여 선호도가 높은 순으로 정렬하여 저장한다. 사용자가 로그인하면 학습된 SOM을 이용하여 대상 사용자 집단을 선정하고 미리 저장된 추천 아이템을 추천한다. 추천결과에 대해 사용자가 평가하면 그 결과를 이용하여 현 시스템의 개정 여부를 결정한다. 제안한 방안에 대해 MovieLens 데이터 셋에 적용하여 실험한 결과 기존의 협력적 여과 기법에 비해 추천 성능이 비교적 우수하면서도 추천 시스템 운용시의 계산 복잡도를 일정하게 유지시킬 수 있음을 보였다.

목차

1. 서론

2. 관련 연구

3. SOM을 이용한 개인화 방안

4. 실험

5. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-013738536