메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회/대한산업공학회 2003 춘계공동학술대회
발행연도
2003.5
수록면
1,146 - 1,153 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Various organizational factors effect successful implementation of IT enabled business transformation. Among them, the most critical
success factor is deemed to overcoming change management problem. Lots of studies have been made on implementation methodologies and business process formalizations to encourage organizational members to accept new business process changes. However, the logic of process redesign still depends on qualitative problem solving techniques mostly depending on basically human intuition such as
brainstorming, cause-and-effect analysis, and so on. In this paper, we focused on developing analytic framework to design to-be business process structure, which can complement qualitative problem solving procedures. With effective use of IT as an enabler,
we provide algorithmic framework applicable to designing various business process changes such as process automation, business process resequencing, and more radical process integration. The
framework follows dynamic programming approach in the literature, which is based on the decision making paradigm of organizations to abstract business processes as quantitative decision models. As such, our research can fill the gap of limited development of theory based analytic methodologies for business process design, by providing objective rationale to reach the consensus among the
organizational members including senior management.

목차

Abstract

1. Introduction

2. IT enabled business process change patterns

3. Fundamental analytic framework

4. Algorithmic development

5. Application potential to process innovation

6. Conclusion

7. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013769610