메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지(B) 정보과학회논문지(B) 제26권 제12호
발행연도
1999.12
수록면
1,383 - 1,392 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미 학습된 다층퍼셉트론 신경망을 디지털 VLSI 기술을 사용하여 하드웨어로 구현할 경우 신경망의 가중치 및 뉴런 출력들을 양자화해야 하는 문제가 발생한다. 이러한 신경망 변수들의 양자화는 결과적으로 주어진 입력에 대한 신경망의 최종 출력에서의 왜곡을 초래한다. 본 논문에서는 먼저 이러한 양자화로 인한 신경망 출력에서의 왜곡을 통계적으로 분석하였다. 분석 결과에 의하면 입력패턴 각 성분의 제곱들의 합과 가중치의 크기들이 양자화 영향에 주로 기여하는 것으로 나타났다. 이러한 분석 결과를 이용하여 양자화를 위한 정밀도가 주어졌을 때, 양자화 영향이 최소화된 다층퍼셉트론 신경망을 설계하는 방법을 제시하였다. 그리고 제안된 방법에 의해 얻은신경망과 오류역전파 학습방법에 의하여 얻은 신경망의 성능을 비교함으로써 제안된 방법의 효율성을 입증하였다. 실험결과는 낮은 양자화 정밀도에서도 제안된 방법이 더 좋은 성능을 보였다.

목차

요약

Abstract

1. 서론

2. 양자화 영향 분석

3. 양자화 영향 최소화 방법

4. 실험

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017752804