메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a new method of lossless predictive coding of 3-D medical image for progressive transmission. Lossless predictive coding may be divided into two consecutive steps: decorrelation step followed by encoding step. In the decorrelation step interpixel redundancies of an image is eliminated. In the encoding step coding redundancies are removed by use of variable length coding like Huffman coding or arithmetic coding. Therefore, the compression ratio of a lossless predictive coding heavily depends upon the decorrelation method. For progressive transmission, hierarchy embedded differential image (REDI) has been extended to deal with 3-D image.
Experiments were conducted to verify the performance of 3-D HEDI in terms of the decorrelation efficiency and the progressive transmission efficiency. The former is estimated by the first order entropy and the latter by PSNR at the reconstruction step as a function of the amount of data transmitted. They are compared with those of 2-D HEDI and DPCM. Experimental results indicate that 3-D HEDI outperforms 2-D HEDI and DPCM in beth decorrelation efficiency as well as the progressive transmission efficiency with 3-D medical images.

목차

Abstract

Ⅰ. Introduction

Ⅱ. 2-D Reversible decorrelation: 2-D HEDI

Ⅲ. Generalized M-D Reversible decorrelation: M-D HEDI

Ⅳ. Experimental Results

Ⅴ. Conclusion

Acknowledgements

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017763950