메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 칼라영상의 한 픽셀은 칼라정보(R,G,B)와 위치정보(x,y)를 가진다. 대개의 칼라공간에서의 클러스터링방법은 픽셀을 (R,G,B)공간으로 변환후 (R,G,B)공간상의 분포만을 이용하지만 여기서는 (R,G,B)와 (x,y)모두를 사용하여 클러스터링함으로 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 중력 클러스터링(gravitational clustering)을 사용하였다. 이 방법은 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. 중력 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법(K-means)에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.

목차

요약

Abstract

1. 서론

2. 중력 클러스터링(gravitational clustering) 알고리즘

3. 이웃관계를 고려한 클러스터링 및 영상분할

4. 실험 결과 및 분석

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017797503