메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 상대인력 모델에 기반한 새로운 군집화 알고리즘, G-CLUS를 제안한다. 제한한 방법에서 모든 개체들은 초기에 동일한 질량을 가지고, 개체간의 인력에 의해 인력이 작용하는 방향으로 점진적으로 이동하게 되어, 초기 시작점 선택이나 군집의 개수를 미리 지정하지 않은 상태에서 자연스럽게 군집을 형성한다. 제안한 방법은 인력작용과정에서 군집의 수가 자연스럽게 결정되며, 한 개체가 받는 힘은 개체간의 인력을 합한 합력을 사용하기 때문에 이상치에 대한 민감성을 완하하였다. 본 알고리즘은 계산복잡도를 낮추기 위하여 큐브개념을 적용하여 O ( nk )의 계산 복잡도를 유지하도록 하였다. 실험에서는, 개체들의 움직임 특성, 군집화 모델에 따른 군집화 과정, 임의의 데이타 집합에 대한 군집화 결과를 보이고, 또한 타 군집화 알고리즘과 제안한 알고리즘의 군집화 결과를 비교한다.

목차

요약

Abstract

1. 서론

2. 만유 인력과 클러스터링 알고리즘 사이의 관계성 연구

3. 상대인력 모델에 기반한 클러스터링 알고리즘

4. 실험결과

5. 결론 및 향후 연구 계획

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017824030