메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2003년도 가을 학술발표논문집 제30권 제2호(Ⅱ)
발행연도
2003.10
수록면
604 - 606 (3page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기, 회전, 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어 ... 전체 초록 보기

목차

요약

1. 서론

2. SIFT 특징 추출

3. 실험 및 평가

4. 결론 및 향후 연구 방향

5. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017887064