메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
야구는 매 경기마다 다양한 기록을 생성하며, 이러한 기록을 기반으로 다음 경기에 대한 승패 예측이 이루어진다. 프로야구 승패 예측에 대한 연구는 많은 사람들에 의해 행해져 왔으나 아직 이렇다할 결과를 얻지 못하고 있는 상태이다. 이처럼 승패 예측이 어려운 이유는 많은 경기 기록들 중 승패 예측에 영향을 주는 요소의 선별이 어렵고, 예측에 사용된 자료들 간의 중복 요인으로 인해 학습 모델의 복잡도만 증가시킬 뿐 좋은 성능을 보이지 못하고 있다. 이에 본 논문에서는 전문가들의 의견을 바탕으로 학습 요소들을 선택하고, 선택된 자료들을 이용하여 휴리스틱 함수를 구성하였다. 요소들 간의 조합을 통해 예측에 영향을 줄 수 있는 새로운 값을 산출함과 동시에 학습 알고리즘에 사용될 입력 값의 차원을 줄일 수 있는 혼합형 모델을 제안하였다. 그 결과, 학습 알고리즘으로 사용된 역전파 알고리즘의 복잡도를 감소시키고, 프로야구 경기 승패 예측에 있어서도 정확성이 향상되었다.

목차

요약

Abstract

1. 서론

2. 기존의 접근 방법

3. 제안된 모델 : 혼합형 모델(휴리스틱 기법+역전파 알고리즘)

4. 시스템의 실험 및 구현

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017895982