메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제31권 제1호
발행연도
2004.2
수록면
23 - 29 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 정규 거리에 기반한 유사 시퀀스의 검색 기법을 제안한다. 시퀀스의 형태가 중요한 관심 사항인 응용에서 정규 거리는 단순한 Lp 거리에 비해 적합한 유사도라 할 수 있다. 이러한 정규 거리에 기반한 질의를 처리하기 위한 기존의 기법들은 시퀀스의 평균을 구한 후 이를 이용하여 시퀀스를 수직 이동하는 전처리 과정을 가지고 있다. 제안된 기법은 시퀀스의 인접한 두 요소들 간의 변이가 정규화 과정에 불변이라는 속성을 이용하여 수직 이동의 전처리 과정 없이 특징 벡터를 추출한 후 이를 R-tree와 같은 공간 접근 기법을 이용하여 인덱싱한다. 제안된 기법은 비슷한 형태의 시퀀스를 검색할 수 있으며 착오 누락이 없음을 보장한다. 실제 주식 데이타를 이용한 실험을 통해 제안된 기법의 성능을 확인하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 제안된 기법

4. 성능 평가

5. 결론

참고문헌

저자소개

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017918160