메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This article presents the design and control of an ultraprecision XY θz stage with nanometer accuracy. The stage has a plane mechanism and symmetric hexagonal structure which consists of a monolithic flexure hinge mechanism with three piezoelectric actuators and six flexures preserving the plane motion. The symmetric design reduces the effect of temperature gradient on the structure. Because the relationship between design variables and system parameters are quite complicated and there are some trade-offs among them, it is very difficult to set design variables manually and optimal design procedure is used. The objective of design is maximizing the 1st resonant frequency to improve the dynamic characteristics. The reason is that the stage must move with heavy load of about 20 ㎏. The higher resonant frequency also makes the stage stiffer and stronger against the dynamic force and moment. This paper describes the procedures of selecting parameters for the optimal design and a mathematical formulation for the optimization problem. The stage was designed to attain ± 10 um in the X- and Y-direction and ±90arcsec in the yaw direction at the same time and have the 1st resonant frequencies of 455.5 ㎐ in X- and Y-direction and 275.3 ㎐ for yaw direction without load. The stage was fabricated according to the optimal design results and experimental results indicate that the design procedure is effective. A conventional PI control results are presented for ultraprecision motion.

목차

Abstract

1. Introduction

2. Conceptual Design of the Stage

3. Modeling of the Stage

4. Optimal Design

5. Control of the Stage

6. Conclusion

References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-018231552