메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 다차원 데이타의 유사도 검색을 효율적으로 지원하기 위한 벡터 근사 기반의 색인 구조를 제안한다. 제안하는 색인 구조는 공간 분할 방식으로 영역을 분할하고 실제 데이타들이 존재하는 영역에 대해 동적 비트를 할당하여 영역을 표현한다. 따라서, 분할된 영역들 사이에 겹침이 발생하지 않으며 하나의 중간 노드에 많은 영역 정보를 저장할 수 있어 트리의 깊이를 감소시킨다. 또한, 특정 영역에 군집화되어 있는 데이타에 대해서 효과적인 표현 기법을 제공하며 자식 노드의 영역 정보는 부모 노드의 영역 정보를 이용하여 상대적으로 표현함으로써 영역 표현에 대한 정확성을 보장한다. 이를 통해 검색성능 향상을 제공한다. 제안하는 색인 구조의 우수성을 보이기 위해 기존에 제안된 다차원 색인 구조와의 다양한 실험을 통하여 성능의 우수성을 입증한다. 성능 평가 결과를 통해 제안하는 색인 구조가 기존 색인 구조보다 40% 정도 검색 성능이 향상됨을 증명한다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 제안하는 색인 구조

4. 삽입 및 분할

5. 실험 및 성능 평가

6. 결론 및 향후 연구

참고문헌

저자소개

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018232730