메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국유체기계학회 한국유체기계학회 학술대회 논문집 유체기계공업학회 2002 유체기계 연구개발 발표회 논문짐
발행연도
2002.12
수록면
346 - 353 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The steam generator feedwater flow rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow rate in pressurized water reactors, may result in unnecessary plant power derating. The backpropagation network was used to generate models of signals for a pressurized water reactor. Multiple-input single-output heteroassociative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

목차

ABSTRACT

1. 서론

2. 원자력발전소에서의 급수유량 측정

3. 방법론

4. 결과 및 고찰

5. 결론

참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-554-015107057