메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대표문장 추출에 의한 다중문서 요약에서는 비슷한 정보가 여러 문서에서 반복적으로 나타나는 정보의 중복문제에 대해 문장의 유사성과 차이점을 고려하여 이를 해결할 수 있는 효율적인 방법이 필요하다. 본 논문에서는 단어의 공기정보에 의한 관련단어 클러스터링 기법을 이용하여 문장의 중복성을 제거하고 중요문장을 추출하는 다중문서 요약을 제안한다. 관련단어 클러스터링 기법에서는 각 단어들은 서로 독립적으로 존재하는 것이 아니라 서로 간에 의미적으로 연관되어 있다고 보며 주제별 문장클러스터단위의 단어 연관성(cohesion)을 이용한다. 평가용 실험문서인 DUC(Document Understanding Conferences) 데이타를 이용하여 실험한 결과 본 논문에서 제안한 문장클러스터단위의 단어 공기정보를 이용한 방법이 단순 통계정보와 문서단위 단어 공기정보, 문장단위 단어 공기정보에 의한 다중문서 요약에 비해 좋은 결과를 보였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 단어 공기정보의 연관규칙

4. 다중문서 요약 시스템

5. 실험 및 평가

6. 결론 및 향후 연구과제

참고문헌

저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015337836