메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2005년 추계학술대회논문집
발행연도
2005.11
수록면
241 - 250 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
New product development (NPD) is defined as the transformation of a market opportunity and a set of assumptions about product technology into a product available for sale. Managers charged with project selection decisions in the NPD process, such as go/no-go choices and specific resource allocation decisions, are faced with a complicated problem. Therefore, the ability to develop new successful products has identifies as a major determinant in sustaining a firm's competitive advantage.
The purpose of this study is to develop a new evaluation model for NPD project selection in the high-tech industry using support vector machines (SVM). The evaluation model is developed through two phases. In the first phase, binary (go/no-go) classification prediction model, i.e. SVM for high-tech NPD project selection is developed. In the second phase. using the predicted output value of SVM, feasibility grade is calculated for the final NPD project decision making. In this study, the feasibility grades are also divided as three level grades. We assume that the frequency of NPD project cases is symmetrically determined according to the feasibility grades and misclassification errors are partially minimized by the multiple grades. However, the horizon of grade level can be changed by firms' NPD strategy. Our proposed feasibility grade method is more reasonable in NPD decision problems by considering particularly risk factor of NPD in viewpoints of future NPD success probability.
In our empirical study using Korean NPD cases, the SVM significantly outperformed ANN and logistic regression as benchmark models in hit ratio. And the feasibility grades generated from the predicted output value of SVM showed that they can offer a useful guideline for NPD project selection.

목차

Abstract

1. Introduction

2. Evaluation Model for New Product Development Projects

3. Alternative Models for New Product Development Projects Decision Making

4. Proposed Evaluation Model for High - Tech New Product Development

5. Experimental Analysis and Results

6. Conclusion

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-015435721