메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 대한건축학회논문집 - 구조계 제22권 제6호
발행연도
2006.6
수록면
173 - 182 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Dynamic and fragmented characteristics are two of the most significant factors that distinguish the construction business from other industries. The objective of this research is to explore a more precise forecasting method by applying Case-based Reasoning (CBR) to overcome these obstacles. The CAMP(CAse Matching Prediction), newly developed forecasting model in this study, enables project managers to forecast monthly expenditures with less time and effort by retrieving and referring only projects of a similar nature, while filtering out irrelevant cases included in database. For the purpose of accurate forecasting, 1) the choice of the numbers of referring projects and 2) the better selection among three levels ? which include a 20-work package level, a 7-major work package level, and a total sum level analysis, were investigated in detail. It is concluded that selecting similar projects at 12~19 % out of the whole database will produce a more precise forecasting.
The new forecasting model, which suggest the predicted values based on previous projects, is more than just a forecasting methodology; it provides a bridge that enables current data collection techniques to be used within the context of the accumulated information. This will eventually help all the participants in the construction industry to build up the knowledge derived from invaluable experience.

목차

Abstract
1. 서론
2. 관련 이론 및 기존연구 고찰
3. CAMP모델 개발을 위한 데이터베이스 구축
4. 월간투입비용 동적예측모델 CAMP 개발
5. CAMP모델의 예측정확도 검증
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-015656339